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This paper seeks to investigate the application of areas from the mathemati-
cal programming, more precisely, in the linear programming applied to the linearli- 
zed optimum power flow problem. This investigation involved the study of linear 
programming and the analysis of the optimum power flow problem in its several for-
mulations. The uses of linear programming were examined, particularly in Electri-
cal Engineering, on the optimum power flow problem. Some problems and examples 
about energy networks were formulated and presented.
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Introduction

The Brazilian and world-
wide electrical sector have been 
suffering several transformations 
[1]. The change from the monopoly 
model to the competitive model 
demands new operational and 
planning philosophies of electrical 
systems, which involve generation, 
transmission and distribution. Fur-
thermore, in the biggest part of the 
system, the rapid demand of energy 
has forced the systems to operate 
in the limit of their capacity and, 
on the other hand, the tentative to 
expand has faced problems with 
environmental, social charac-
teristics and also financial crisis 
that has reduced investments in 
this sector. 

As an alternative to expan-
sion, for example, it is possi-ble 
to actuate in the systems’ ope-
ration, resettling generators and/
or working on the equipments’ 
adjustments, having as objectives 
to diminish losses, to minimize the 
generation costs, to increase the 
system’s transmission capacity. In 
other words, optimize on one or 
more of its performance indexes. 

The main computerized 
tool used to determine the electrical 
systems’ optimum operational point 
is denominated optimum power 
flow (OPF). The optimum power 
flow can be used together with the 
estimated state to, periodically, 
adjust the optimum exit control in 
order to maintain a feasible voltage 

and the sources of reactive power 
[9].

In 1984, Kamarkar, quoted 
by [10], published an article in 
which the optimizing method that 
was presented, rarely visits the 
extreme points before the optimum 
point is found; in other words, the 
algorithm finds viable solutions in 
the interior of the polygon, avoiding, 
in this manner, the combinative 
complexity which is derivative from 
the vertex’s solutions. Due to the 
procedure proposed by Karmarkar, 
the method is called “interior points 
method” (IPM) and has dispersed 
characteristics and has been widely 
used in the specialized literature. 

The interior points 
method belongs to a class of 
optimizing algorithms originally 
designated for linear programming 
problems. However, due to its high 
performance level this method 
was extended to quadratic, convex 
programming problems and diffe-
rentiable optimizing problems in 
general.

When applying the interior 
point method in optimum power 
flow problems, two distinct stra-
tegies are adopted. The first applies 
the method to a linear programming 
problem which is obtained by the 
linearization of the active and reac-
tive power balance equations of the 
power flow algorithm. The second 
consists on applying the interior 
points method directly on the ori-
ginal non-linear programming pro-
blem of the optimum power flow. 
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 Operational Research

Initial Considerations

According to [6], during 
the Second World War, a group of 
scientists were united in England 
to study strategy problems and the 
tactics associated to the country’s 
defence. The objective was to decide 
about the most efficient use of the 
limited military resources. The call 
of this group’s meeting is identified 
as the first operational research 
formal activity. 

The positive results that 
were obtained by the British 
operational research team motiva-
ted the Americans to initiate si-
milar activities. Even though 
the origin of the Operational 
Research is accounted to England, 
its propagation is due mainly to a 
group of scientists leaded by George 
B. Dantzig from the United States of 
America, drafted during the Second 
World War. The result of the effort 
involved in this research, which 
was concluded in 1947, was named 
Simplex Method.

A very important charac-
teristic of operational research and 
which made the process of analysis 
and of decision easier was the 
usage of models. They allow the 
experimentation of the proposed 
solution. This means that, before 
a decision is implemented, it can 
be better evaluated and tested. 
The obtained economy and the 
experience that is acquired by this 
experimentation, justifies it usage.  

In the beginning of the 
50s, several areas began to appear, 
which are today collectively known 
as mathematical programming.
With the linear programming 
the mathematical programming 
sub-areas grew rapidly, having 
a fundamental performance in 
this development. Among these 
sub-areas are the non-linear 
programming, which started around 
1951 with the famous Karush-
Kuhn-Tucker condition, commercial 
utilization, network flows, linear 
programming, integer programming, 
dynamic programming and stocking 
programming.

The linear programming
is used to analyze models where 
the restrictions and the objective 
function are linear; the integer
programming is applied in models 
that have integer variables (or 
discreet); the dynamic programming
is used in models where the entire 
problem can be decomposed 
into smaller sub-problems; the 
stocking programming is applied 
in a special class of models where 
the parameters are described by 
probability functions; finally, the 
non-linear programming is used 
in models containing non-linear 
functions.

A characteristic that 
is present in almost of all the 
mathematical programming is 
that the optimum solution of the 
problem can not be obtained with 
only one step, having to be obtained 
iteratively. An initial solution is 
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chosen (which usually is not an 
optimum solution). One algorithm is 
specified to determine, starting from 
it, a new solution that normally is 
superior to the preceding one. This 
step is repeated until the optimum 
solution is achieved (supposing it 
does exist).

Linear Programming 

The general problem of the 
linear programming, according to 
[3], is used to optimize (maximize 
or minimize) a linear function of 
variables, called “objective function”, 
which is subject to a succession of 
linear equations or inequalities, 
called restrictions. The formulation 
of the problem to be solved by linear 
programming follows some basic 
steps, as described below:

1. The basic objective of 
the problem should be defined, in 
other words, the optimization to be 
reached. For example, the profit’s 
maximization, or performance, 
or social welfare, cost, loss, time 
minimization. This objective will 
be represented by an objective 
function, to be maximized or mini-
mized.

2. For this function to 
be mathematically specified, the 
variables of decision involved should 
be defined. For example, number of 
machines, the area to be explored, 
and the classes of investment that 
are available, etc. Normally, it is 
expected that all these variables 
can assume only positive values.

3. These variables normally 
are subjected to a series of restric-
tions, usually represented by equa-
tions. For example, quantity of 
equipment that is available, size 
of the area to be explored, the 
capacity of a reservoir, nutritional 
requirements of a determined diet, 
etc.

All these expressions, 
however, should be according to 
the main hypotheses of the linear 
programming, in other words, 
all the relations between the 
variables should be linear. This 
implies in the proportionality of the 
quantities involved. This linearity 
characteristic can be interesting as 
for simplifying the mathematical 
structure involved, but prejudicial 
when representing non-linear 
phenomenon (for example, cost 
functions that are typically qua-
dratic).

The canonical form of a 
linear programming problem is 
presented as followed:

Max.
4433 e000zeze +++

"

(1)

where pp4433 ze000zeze +++
represents a linear objective 
function to be maximized and 
can be expressed or represented 

by z. The coefficients eee .000.. 43



13
PRETEXTO

Belo Horizonte, v. 8, n. 2, p. 9-22,  jul-dez. 2007

Emerson Eustáquio Costa , Luiz Danilo Barbosa Terra , George Leal Jamil

represent costs (known values) and

pzzz .000.. 43  represent the decision 
variables; their values should be 
obtained by the solution, if the 
solution of the problem exists.

The inequality 
∑ ≤
p

klkl dzc

represents the set of linear res-

trictions with { }ok .000.4.3∈  and 

{ }pl .000.4.3∈ . The set of all the 

coefficients klc  make up the 
technological coefficients’ matrix. 

And 2.000.. 43 ≥pzzz  guarantees the 
non-negativity of the decision 
variables.

The Simplex Method

According to [6], a procedure 
is a finite sequence of instructions 
and algorithm is a procedure 
that ends in a finite number of 
operations.

The simplex method 
through its iterative algorithm 
searches for the solution, if it exists, 
by the vertices of a viable region 
until it finds a solution which does 
not have better neighbors than 
itself. This is an optimum solution. 
The optimum solution may not exist 
in two cases: when a viable solution 
does not exist, due to incompatible 
restrictions; or when the maximum 
does not exist (or minimum), in 
other words, one or more variables 
can incline to the infinitive and the 

restrictions continue to be satisfied 
which gives a value without limits 
to an objective function.

The simplex algorithm 
stands out as one of the greatest 
contributions to the mathematical 
programming of the twentieth 
century. It is an extremely effi-
cient general algorithm, as 
mentioned by [6], for the solution 
of linear systems and adaptable 
for computational calculus. Its 
functional comprehension will give 
a base for several other methods. 
Refuting this statement, Latoree 
quoting [1], declares that even 
though the simplex method is in 
practice very efficient, it presents 
exponential complexity, in other 
words, the number of iterations 
grows exponentially with the 
number of the problem’s variables.

The Interior Points Methods 
(IPM)

The interior points methods 
had their recognition in 1984, 
when Karmarkar proposed an 
polynomial algorithm that requires 
(n3,5L) arithmetic operations and 
(nL) iterations in the worse cases, 
assuring that the iterative process 
is of an order of 50 times more 
rapid than the simplex method 
[10]. Initially the performance of 
this method was very criticized by 
the scientific community, but the 
results present by (ADLER, 1989) 
quoted in [8], gave a new impulse 
to the development of this class 
of methods. The revolution of the 
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interior points’ methods, as many 
other revolutions, includes earlier 
ideas which are rediscovered or 
seen in a different way, together 
with genuine new ideas [10].

Given a solution’s feasible 
region of a linear (or non-linear) 
programming problem, a interior 
point is that in which all the 
variables (coordinates) meet inside 
this region, named region of viable 
solutions.

The Karmarkar algorithm 
is significantly different from 
George Danzig’s simplex method, 
which solves a Linear Programming 
Problem (LPP) starting from an 
extreme point along its limit to, 
finally, reach an optimum extreme 
point. The method that was 
projected by Karmarkar rarely 
visits the extreme points before 
the optimum point is reached, in 
other words, the algorithm finds 
viable solutions in the interior of 
the solution.

The IPM tries to find 
a solution in the center of the 
polygon, finding a better direction 
for the next move, in the direction 
to find an optimum solution for the 
problem. Choosing the correct steps, 
an optimum solution is reached 
after a few iterations.

Even though to find  a 
direction of movement, the 
IPM approach requires a longer 
computing time than the traditional 
simplex method and a smaller 
number of iterations will be required 

by the IPM to reach an optimum 
solution. In this manner, the IPM 
approach has become a competitive 
tool with the simplex method 
and, for this reason, has attracted 
the attention of the optimization 
community. 

Fig.1 illustrates how the 
two methods approach the optimum 
solution. In this example, the IPM 
algorithm requires approximately 
the same quantity of iterations than 
the simplex method. How ever, 
for a bigger problem, this method 
requires only a fraction of the 
numbers of repetitions demanded 
by the simplex method and, the 
IPM also works perfectly with non-
linear problems. 

FUGURA 1 - SIMPLEX METHOD  
X  INTERIOR POINTS METHOD

Optimum Power Flow

Electric energy has an 
important role in the society, from 
domestic, commercial usage to 
industrial usage. Knowing this, it 
is impossible conceive the lack of 
this important input in any kind 
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of activity. That is the reason of 
the importance of these studies 
related to the improvement of the 
generation and transmission of this 
energy. 

According to [7], up to the year 
of 1970, the final energy consumed 
from electrical energy in Brazil 
had less than 20% of participation 
of the final consumption. After the 
first petroleum crises in 1975, the 
percentage of the final consumption 
of electrical energy reached 22% 
and in 1999 it reached a percentage 
of 40%. It is important to remember 
that the hydroelectric plants are 
responsible for about 80% of the 
generation of electrical energy, as 
declared by Oliveira (1999), quoted 
in [7].

The Brazilian electrical 
energy generation system has 
characteristics that make it unique 
in the world:

1. Hydroelectric predominance;

2. Great geographic extensions 
and great distances between the 
generation sources and the main 
consumer centers. 

3. Several potentials to be utilized 
in the same river;

4. Diversity of hydrologic and 
pluviometric regimes;

5. Relative high degree of inter-
connection between the systems 
(south/southeast /centre-west 
regions), in comparison with other 
countries;

6. Great unexplored hydroelectric 
potential.

With these characteristics, 
it is possible to notice the 
importance of integrated expansion 
planning e usage of the generation 
and transmission system, so that it 
can work in an optimized manner.

The Optimum Power Flow 
Problem

There are, according to 
[1], several feasible points for 
the correct performance of the 
electric power system (EPS), but 
some of the operational points are 
more advantageous than others, 
depending in the aspects in which 
they are evaluated. For example, 
to diminish the system’s losses, it 
is possible to distribute uniformly 
the generation by the generation 
systems; on the other hand, to 
minimize the generation costs, it is 
advantageous that this distribution 
stops being uniform and starts to 
being concentrated in generators 
with lower costs. 

To solve this problem, it is 
common to use the optimum power 
flow (OPF) where, by means of an 
objective function, it is possible to 
find an optimum performance point 
to satisfy one or more objectives, 
being the system subjected to 
physical, performance, reliability 
restrictions, among others.

[2] Maintains that 
OPF problem was proposed by 
Carpentier in the beginning of the 



16
PRETEXTO

Belo Horizonte, v. 8, n. 2, p. 9-22,  jul-dez. 2007

Mathematical programming elements: its application to the optimum power flow problem

60s, starting from the economic 
dispatch (ED) problem. Historically, 
the ED problem, solved by equal 
incremental costs, was the prede-
cessor of the optimum power flow 
problem, which marked the end of 
the ED classical period, which had 
been studied and developed during 
30 years. Thus, the ED problem 
started to be approached as an OPF 
private case.

According to [9], the methods 
for the solution of the OPF can be 
united in four big families: Linear 
Programming (LP), Kuhn-Tucker 
(KT), Gradiente (GR) and metric 
variables (MV). During the last three 
decades, the problem’s solutions 
used theses different mathematical 
programming techniques.

[8] Affirm that the OPF 
can be applied in several analysis 
problems and power operational 
systems, such as generation and 
transmission reliability, secu-rity 
analysis, generation and trans-
mission expansion planning 

and short term generation pro-
gramming.

In  most of these 
applications, the linearized repre-
sentation (DC) of the power flow 
has been adopted, due to its 
bigger simplicity and the degree of 
satisfactory precision of its results. 
In the Fig.2 the functional structure 
of the EPSs are presented.

According to [5], the 
functional structural components 
which are presented in the Fig.2 
are:

• Generation: formed by generating 
plants or powerhouses. These 
powerhouses can be hydroelectric, 
thermal (coal, oil or natural gas) or 
nuclear. The hydroelectric power-
houses, generally, are located 
far from the consuming centers, 
making it necessary to have 
complex transmission systems and 
high tension.

• Transmission: constituted by the 
transmission auxiliary equipments 

FIGURA 2 - THE EPSS’ FUNCTIONAL STRUCTURE
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which are needed to transmit the 
power produced in the generating 
powerhouses to the consumers’ 
centers. The transmission systems 
can be of alternate current (AC) or 
continuous current (CC).

• Distribution: constituted by the 
substations and feeders which are 
responsible for the electric power 
distribution to the industrial, 
commercial and residence consu-
mers.

The mathematical model of 
the OPF problem is represented by 
an optimizing problem formulated 
in the next section. 

Formulation of the Optimum 
Power Flow Problem

The optimum power flow 
problem, as seen before, consists 
in determining the state of an 
electric network. It maximizes or 
minimizes an objective function 
while it satisfies a group of physical 
and operational restrictions.

The restrictions of equality 
correspond to the active and reactive 
power balance equations in each 
network’s busbar. The inequalities 
are functional restrictions, such 
as flow monitoring in lines and 
physical and operational limits of 
the system.

The Optimum Power 
Flow problem can be formulated 
mathematically and, generically, 
by:

(2)

where: ( )rwz .. ∈  Rn represents 
the state, control and disturbance 
variables respectively; f(x,u,p)
represents the performance index of 

the system; ( ) 2.. =rwzi  represents 

power flow equations; ( ) 2.. ≤rwzj
represents functional restrictions, 
in other words, active and reactive 
power  limits in the transmission 
lines and transformers, reactive 
power injection limits in the 
controlling tension bars and injection 
of active power in the reference bar; 

o czo kpo czo kp wwwgzzz ≤≤≤≤
represent limits on the state and 
controlling variables, respectively. 

Mathematical Programming 
Applied in the Optimum 
Power Flow Problem DC

Initial Considerations

An electric power system 
has a series of controlling devices 
which have a direct influence on 
the operational conditions and, 
therefore, should be included in the 
modeling of the system so that it can 
correctly simulate its performance. 

The table 1 lists each of the 
cases that were investigated, the 
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network that was used, the problem 
in question, the objective function, 
the problem’s restrictions and the 
optimizing method that was used.

Source: [4]

4.2. Economical Dispatch – Case I

Case 1 consists in solving an 
economical dispatch problem using 
an objective function of which goal 
it to minimize the cost of the active 
power generation. The MatLab’s 
LINPROG routine will be used to 
solve this case.

The Fig.3 shows a unifilar
diagram of the 6 bars system, being 
2 generation bars, 3 of charge and 
one of 3 type, that is, one of reference 
and 7 lines, used to illustrate Case 
1.

The data for the modeling, 
resolution and analysis of the 
problem, are found in the Tables 2 
and 3. In the Table 2 the data about 
the lines are shown.

Table 2 

DATA OF THE LINES /
TRANSFORMERS FOR THE 6 
BARS AND 7 LINES SYSTEM

Nkpgu Kpkvkcn"
Dct

Hkpcn"
Dct

Z

*rw+

Hnqy u"
nko kvu"
*rw+

N3 3 8 2073: 20: 2

N4 3 6 20592 20: 2
N5 6 8 20629 2052

N6 7 8 20522 203:
N7 4 7 20862 20: 2
N8 4 5 30272 20; 2
N9 5 6 20355 20: 2

Source: [4]

Table 1

SYNTHESIS OF THE CASES TO BE INVESTIGATED

FIGURA 3 - SYSTEM OF 6 BARS 
AND 7 LINES.
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In Table 3, the bar data are 
shown.

Source: [4]

The problem can be 
formulated as:

(3)

Rewriting the formulated problem, 
you have:

⎥
⎥
⎥
⎥

⎦
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⎦
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⎢
⎢
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⎢
⎢

⎣

⎡

≤

⎥
⎥
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⎦

⎤

⎢
⎢
⎢
⎢
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⎡
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R
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R
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C
4I
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C
4I

D
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C
6I

D
4I

C
4IV

FIGURA 4 - SHOWS THE 
DISPATCH, BEFORE AND 
AFTER THE OPTIMIZATION.

The powers’ flows before 
and after the optimization are 
shown in Fig.5.

Table 3
BAR DATA FOR THE 6 BARS AND 7 LINES SYSTEM

(4)

Source: [4]
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Source: [4]

Congestion Management
Case II

This case involves conges-
tion management with the minimum 
of load cut. The network data are the 
same as in Case I. The limits of the 
controlling variables are described 
in Table 4. The limits of the power 
flowes were reduced in 50%, aiming 
in creating situations of multiple 
congestions. To solve the problem, 
the MatLab toolbox optimization 
from LINPROG routine will be 
maintained.

Table 4 

LIMITS IN THE 
CONTROLLING VARIABLES

Controlling 
Variable 

Kphgtkqt"
Nko kv

"
*r w+

Uwr gtkqt"
Nko kv

"
*r w+

R
I 4

2062 20: 2
R
F5

/2077 /2057
R
I 6

2032 2077

R
F7

/2052 /2047
R
F8

/2072 /2062

The problem can be 
formuladed in an incremetal form: 

The initial and final flowes 
are represented in Fig.7.

FIGURA 5 - FLOWES IN THE LINES

FIGURA 6 - SHOWS THE CON-
TROLLING VARIABLES BEFORE 
AND AFTER THE SOLUTION 
OF THE LOAD SHEDDING 
PROBLEM. 

Source: [4]
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Final Considerations

This paper investigated the 
mathematic programming appli-
cations, more precisely, the linear 
programming to the linearlized 
optimum power flow problem.

Different methods of 
problem solutions in linear pro-
gramming were presented and 
discussed. The interior points 
method was reported as being 
indicated for lager problems. The 
Simplex algorithm showed itself to 
be adequate for smaller and medium 
size networks.

The optimum power flow 
problem, in its several formulations, 
was examined and its objective 
functions and typical problems’ 
restrictions were described.

Formulations of Optimum 
Dispatch and Network Congestion 
problems, in its linear version, 
were presented and numerical 

FIGURA 7 – FLOWS IN THE 
LINES
Source: [4]

demonstrative examples were also 
presented.
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