SEARCH TRENDS
CLASSIFICAÇÃO E AGENDA DE PESQUISA
Resumo
Este estudo tem como objetivo fornecer uma análise do papel e do potencial do Search Trends como fonte de dados. Usando uma análise bibliométrica identificamos três clusters principais onde os dados das Search Trends demonstraram eficácia: previsão da procura turística, análise do comportamento público durante crises como a pandemia da COVID-19 e análise de mercado. A natureza em tempo real da fonte de dados e a capacidade de capturar o sentimento das massas tornaram-na indispensável nesses clusters. No entanto, limitações como a fiabilidade dos dados e potenciais vieses exigem uma interpretação cautelosa. O estudo também traça uma agenda de pesquisa futura, destacando caminhos promissores em análise comportamental, avaliação de previsões, análise de mercado e pesquisa boca a boca.
Referências
Abdi, Hervé; Valentin, D. (2007). Multiple correspondence analysis. Encyclopedia of Measurement and Statistics, 2(no 4), 651–657. https://doi.org/10.1016/j.cmpb.2009.02.003
Allen, A. M., Green, T., Brady, M. K., & Peloza, J. (2020). Can corporate social responsibility deter consumer dysfunctional behavior? Journal of Consumer Marketing, 37(7), 729–738. https://doi.org/10.1108/JCM-11-2019-3503
Ampountolas, A., & Legg, M. P. (2021). A segmented machine learning modeling approach of social media for predicting occupancy. International Journal of Contemporary Hospitality Management, 33(6), 2001–2021. https://doi.org/10.1108/IJCHM-06-2020-0611
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
Askitas, Nikolaos, & Zimmermann, K. F. (2015). Health and well-being in the great recession. International Journal of Manpower, 36(1), 26–47. https://doi.org/10.1108/IJM-12-2014-0260
Askitas, Nikos, & Zimmermann, K. F. (2011). Google Econometrics and Unemployment Forecasting. SSRN Electronic Journal, May. https://doi.org/10.2139/ssrn.1465341
Baidu. (2022). Baidu Top. http://top.baidu.com
Bales, M. E., Wright, D. N., Oxley, P. R., & Wheeler, T. R. (2020). Bibliometric Visualization and Analysis Software : State of the Art , Workflows , and Best Practices.
Bangwayo-Skeete, P. F., & Skeete, R. W. (2015). Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach. Tourism Management, 46, 454–464. https://doi.org/10.1016/j.tourman.2014.07.014
Berry, L. L., & Parasuraman, A. (1993). Building a new academic field-The case of services marketing. Journal of Retailing, 69(1), 13–60. https://doi.org/10.1016/S0022-4359(05)80003-X
Blazquez, D., & Domenech, J. (2018). Big Data sources and methods for social and economic analyses. Technological Forecasting and Social Change, 130(March 2017), 99–113. https://doi.org/10.1016/j.techfore.2017.07.027
Bulut, L. (2018). Google Trends and the forecasting performance of exchange rate models. Journal of Forecasting, 37(3), 303–315. https://doi.org/10.1002/for.2500
Caetano, M. A. L. (2021). Political activity in social media induces forest fires in the Brazilian Amazon. Technological Forecasting and Social Change, 167(March 2020), 120676. https://doi.org/10.1016/j.techfore.2021.120676
Callon, M., Courtial, J. P., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry. Scientometrics, 22(1), 155–205. https://doi.org/10.1007/BF02019280
Carrière-Swallow, Y., & Labbé, F. (2013). Nowcasting with Google trends in an emerging market. Journal of Forecasting, 32(4), 289–298. https://doi.org/10.1002/for.1252
Chartered Association of Business Schools. (2021). Academic Journal Guide 2021. https://charteredabs.org/academic-journal-guide-2021/
Choi, H., & Varian, H. (2012). Predicting the Present with Google Trends. Economic Record, 88(SUPPL.1), 2–9. https://doi.org/10.1111/j.1475-4932.2012.00809.x
Chumnumpan, P., & Shi, X. (2019). Understanding new products’ market performance using Google Trends. Australasian Marketing Journal, 27(2), 91–103. https://doi.org/10.1016/j.ausmj.2019.01.001
Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, 5(1), 146–166. https://doi.org/10.1016/j.joi.2010.10.002
Cuccurullo, C., Aria, M., & Sarto, F. (2016). Foundations and trends in performance management . A twenty-five years bibliometric analysis in business and public administration domains Foundations and trends in performance management . and public administration domains. Scientometrics, May. https://doi.org/10.1007/s11192-016-1948-8
De Luca, G. (2021). Modelling societal knowledge in the health sector: Machine learning and google trends. Journal of Innovation Economics and Management, 35(2), 105–129. https://doi.org/10.3917/jie.pr1.0092
Du, R. Y., Hu, Y., & Damangir, S. (2015). Leveraging trends in online searches for product features in market response modeling. Journal of Marketing, 79(1), 29–43. https://doi.org/10.1509/jm.12.0459
Fahimnia, B., Sarkis, J., & Davarzani, H. (2015). Green supply chain management: A review and bibliometric analysis. International Journal of Production Economics, 162, 101–114. https://doi.org/10.1016/j.ijpe.2015.01.003
Google. (2022). Google Trends. https://trends.google.com
Hu, M., Xiao, M., & Li, H. (2021). Which search queries are more powerful in tourism demand forecasting: searches via mobile device or PC? International Journal of Contemporary Hospitality Management, 33(6), 2022–2043. https://doi.org/10.1108/IJCHM-06-2020-0559
Hu, Y., Du, R. Y., & Damangir, S. (2014). Decomposing the impact of advertising: Augmenting sales with online search data. Journal of Marketing Research, 51(3), 300–319. https://doi.org/10.1509/jmr.12.0215
Jun, S. P., Yeom, J., & Son, J. K. (2014). A study of the method using search traffic to analyze new technology adoption. Technological Forecasting and Social Change, 81(1), 82–95. https://doi.org/10.1016/j.techfore.2013.02.007
Jun, S. P., Yoo, H. S., & Choi, S. (2018). Ten years of research change using Google Trends: From the perspective of big data utilizations and applications. Technological Forecasting and Social Change, 130(February 2017), 69–87. https://doi.org/10.1016/j.techfore.2017.11.009
Jun, S. P., Yoo, H. S., & Lee, J. S. (2021). The impact of the pandemic declaration on public awareness and behavior: Focusing on COVID-19 google searches. Technological Forecasting and Social Change, 166, 120592. https://doi.org/10.1016/j.techfore.2021.120592
Ma, Y. ran, Ji, Q., & Pan, J. (2019). Oil financialization and volatility forecast: Evidence from multidimensional predictors. Journal of Forecasting, 38(6), 564–581. https://doi.org/10.1002/for.2577
Naver. (2022). Naver Database. https://datalab.naver.com/keyword/trendSearch.naver
Nguyen, D. D., & Pham, M. C. (2018). Search-based sentiment and stock market reactions: An empirical evidence in Vietnam. Journal of Asian Finance, Economics and Business, 5(4), 45–56. https://doi.org/10.13106/jafeb.2018.vol5.no4.45
Nikolopoulos, K., Punia, S., Schäfers, A., Tsinopoulos, C., & Vasilakis, C. (2021). Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions. European Journal of Operational Research, 290(1), 99–115. https://doi.org/10.1016/j.ejor.2020.08.001
Perlin, M. S., Caldeira, J. F., Santos, A. A. P., & Pontuschka, M. (2016). Can we predict the financial markets based on google’s search queries? Journal of Forecasting, 36(4), 454–467. https://doi.org/10.1002/for.2446
Perlin, M. S., Caldeira, J. F., Santos, A. A. P., & Pontuschka, M. (2017). Can we predict the financial markets based on google’s search queries? Journal of Forecasting, 36(4), 454–467. https://doi.org/10.1002/for.2446
Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K., Ben Taieb, S., Bergmeir, C., Bessa, R. J., Bijak, J., Boylan, J. E., Browell, J., Carnevale, C., Castle, J. L., Cirillo, P., Clements, M. P., Cordeiro, C., Cyrino Oliveira, F. L., De Baets, S., Dokumentov, A., … Ziel, F. (2022). Forecasting: theory and practice. International Journal of Forecasting, 38(3), 705–871. https://doi.org/10.1016/j.ijforecast.2021.11.001
Ruohonen, J., & Hyrynsalmi, S. (2017). Evaluating the use of internet search volumes for time series modeling of sales in the video game industry. Electronic Markets, 27(4), 351–370. https://doi.org/10.1007/s12525-016-0244-z
Schaer, O., Kourentzes, N., & Fildes, R. (2019). Demand forecasting with user-generated online information. International Journal of Forecasting, 35(1), 197–212. https://doi.org/10.1016/j.ijforecast.2018.03.005
Shoss, M. K., Horan, K. A., DiStaso, M., LeNoble, C. A., & Naranjo, A. (2021). The Conflicting Impact of COVID-19’s Health and Economic Crises on Helping. In Group and Organization Management (Vol. 46, Issue 1). https://doi.org/10.1177/1059601120968704
Smith, P. (2016). Google ’ s MIDAS Touch : Predicting UK Unemployment with. 284(February), 263–284.
Statista. (2020). Worldwide desktop market share of leading search engines from January 2010 to July 2020. https://www.statista.com/statistics/216573/worldwide-market-share-of-search-engines/#:~:text=Ever since the introduction of,share as of July 2020.
Sugimoto, C. R., Larivière, V., Ni, C., & Cronin, B. (2013). Journal acceptance rates: A cross-disciplinary analysis of variability and relationships with journal measures. Journal of Informetrics, 7(4), 897–906. https://doi.org/10.1016/j.joi.2013.08.007
Urbinati, A., Bogers, M., Chiesa, V., & Frattini, F. (2018). Creating and capturing value from Big Data: A multiple-case study analysis of provider companies. Technovation, 1–16. https://doi.org/10.1016/j.technovation.2018.07.004
Vicente, M. R., López-Menéndez, A. J., & Pérez, R. (2015). Forecasting unemployment with internet search data: Does it help to improve predictions when job destruction is skyrocketing? Technological Forecasting and Social Change, 92, 132–139. https://doi.org/10.1016/j.techfore.2014.12.005
Vyas, C. (2019). Evaluating state tourism websites using Search Engine Optimization tools. Tourism Management, 73(January), 64–70. https://doi.org/10.1016/j.tourman.2019.01.019
Woo, J., & Owen, A. L. (2019). Forecasting private consumption with Google Trends data. Journal of Forecasting, 38(2), 81–91. https://doi.org/10.1002/for.2559
Wu, L., & Lee, C. (2016). Limited Edition for Me and Best Seller for You: The Impact of Scarcity versus Popularity Cues on Self versus Other-Purchase Behavior. Journal of Retailing, 92(4), 486–499. https://doi.org/10.1016/j.jretai.2016.08.001
Xu, X., & Reed, M. (2019). Perceived pollution and inbound tourism for Shanghai: a panel VAR approach. Current Issues in Tourism, 22(5), 601–614. https://doi.org/10.1080/13683500.2018.1504898
Yandex. (2022). Yandex keyword statistics. https://wordstat.yandex.com
Yang, X., Pan, B., Evans, J. A., & Lv, B. (2015). Forecasting Chinese tourist volume with search engine data. Tourism Management, 46, 386–397. https://doi.org/10.1016/j.tourman.2014.07.019
Zhao, D., Fang, B., Li, H., & Ye, Q. (2018). Google search effect on experience product sales and users’ motivation to search: Empirical evidence from the hotel industry. Journal of Electronic Commerce Research, 19(4), 357–369.
Zupic, I., & ?ater, T. (2015). Bibliometric Methods in Management and Organization. Organizational Research Methods, 18(3), 429–472. https://doi.org/10.1177/1094428114562629
Downloads
Publicado
Edição
Seção
Licença
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na Revista FACES, editada pela Universidade FUMEC, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Universidade Fumec e declaro estar ciente de que a não observância deste compromisso submeterá o infrator a sanções e penas previstas na Lei de Proteção de Direitos Autorias (Nº9609, de 19/02/98).
A Revista de Administração FACES Journal é licenciada sob Licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional.